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Abstract

Climate scenarios that forecast potential future pathways of the green transition are increas-
ingly being applied by financial institutions to assess financial risk, including for climate stress
testing. There are a variety of climate scenarios that apply different modelling techniques to
forecast future economic trajectories. These models often project different trends of key eco-
nomic indicators and variables, even when the scenario is based on the same temperature target
or the same policy ambition. Using a consistent climate stress test applied across eleven differ-
ent climate scenarios under two different temperature targets and policy ambitions for a global
set of power companies, this paper finds significant variation in the impact that each scenario
has on the assessment of company valuation, and in the probability of default. First, we demon-
strate that climate scenarios have significantly different and varying impacts on power company
performance depending on the choice in climate scenario, even when using scenarios with the
same policy ambition or temperature target. Second, we find variability and disagreement in
positive and negative company performance based on different energy sector technology tra-
jectories within each scenario. Third, variability in company performance by technology is also
differentiated based on climate scenario stringency, with more stringent and ambitious sce-
narios leading to less variability compared to less stringent and less ambitious ones. Finally,
differences and variability in company performance have implications for financial institutions
based on the probability of default. Based on these findings, we show that the variation in
the probability of default and the company valuation is ultimately related to differences in the
assumptions of the transition pathway. This can have significant implications for how financial
institutions conduct portfolio selection and climate stress testing.
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1 Executive summary

1. Widespread heterogeneity in climate scenario providers and trajectories indicate large uncer-
tainty for financial institutions in assessing corporate climate transition scenario pathways.

2. This has significant implications for climate financial stress testing that are premised on climate
scenario pathways to meet certain temperature targets and policy ambitions.

3. A consistent, bottom–up, climate financial stress test is applied to a set of 3,419 power com-
panies using different scenario trajectories, and provides two main outputs: a measure of net
present value change for the power company under a climate transition stress scenario com-
pared to the baseline, and a measure of probability of default change under the stress scenario
compared to the baseline.

4. Five scenarios from four different providers are compared under a less ambitious goal of reach-
ing a global average surface temperature increase of below 2°C, and four scenarios under three
different providers are compared under a more ambitious goal of reaching a global net zero by
2050.

5. Distribution of company–level NPV changes under the stress test show that there are signifi-
cant differences in company impacts based on the climate scenario. This can lead to significant
differences in the assessment of market and credit risk for companies.

6. Analysis of individual power technologies shows that the heterogeneity in company perfor-
mance is driven by the same disagreeing technology pathways across climate scenario source
Integrated Assessment Models for the same climate policy ambition.

7. Renewable technology companies consistently show improvement in NPV under any stress
scenario, but there is some disagreement and wide ranging results on the extent to which coal,
gas, and oil companies lose NPV, with some companies under each technology showing positive
NPV growth.

8. Hydro and nuclear technology power companies show the greatest uncertainty in performance
under stress scenarios showing widespread disagreement in positive or negative performance
depending on the climate scenario being used.

9. Results of probability of default change show similarly conflicting results with high variation
in a company’s PD, and disagreement in positive or negative change in PD, but overall higher
levels of agreement between scenarios compared to NPV change.

10. Further research is needed to address both the uncertainty and assumptions in climate scenario
trajectories as they are applied to financial climate risk analysis, and the various approaches
that are used to conduct climate financial stress testing.
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2 Introduction

The economic transition towards a low–carbon economy introduces opportunities and risks that

can have a significant impact on the performance of companies, with larger potential ramifications

for financial stability.1 This transition represents significant challenges for financial institutions

that can directly translate to real values, behaviours, planning, and strategy.2 Central banks have

cautioned the potential destabilising effects of climate change risk on financial stability, and poli-

cymakers have underscored the potential of climate transition as a source of systemic risk.3 Such

concerns have motivated central banks and regulatory authorities to consider the extent to which

climate–related risks might undermine financial stability by implementing transition–based stress

testing exercises.4

Substantial progress has been made to develop risk frameworks and analytical tools that assess

financial losses based on the financial stress associated with a given future climate scenario.5 Yet,

most of these assessments place insufficient attention on the different ways the green transition

could unfold, driven by differences in key assumptions inherent in models that underlie climate

scenarios.6 Consequently, the reliance on certain climate scenario trajectories over others may

give an inaccurate evaluation of financial risk, and an inherent uncertainty in their trajectories.7

Assessing the resilience and vulnerability of financial institutions under only a limited number of

mitigation pathways that were generated across consistently defined Integrated Assessment Models

does not sufficiently capture the wide range of different beliefs and assumptions built into the

modelling dynamics of the energy system, the speed of technological progress, and the extent to

which socio–economic and climate constraints are reflected.8

The broad range of methods for evaluating firm value or financial risk from the

climate transition, and the data required to do such analysis, has several constraints

that make it uncertain for two reasons.

1Catriona Marshall et al. Financial markets and climate transition: Opportunities, challenges, and policy implications.
Committee on Financial Markets Report. Paris: Organisation for Economic Co-operation and Development, 2021.

2Irene Monasterolo. “Climate change and the financial system”. In: Annual Review of Resource Economics 12.1 (2020),
pp. 299–320.

3Stefano Battiston, Yannis Dafermos, and Irene Monasterolo. “Climate risks and financial stability”. In: Journal of
Financial Stability 54.06 (2021), pp. 1–6.

4Pierpaolo Grippa, Joachen Schmittmann, and Felix Suntheim. Climate change and financial risk. Global Financial
Stability Report. International Monetary Fund, 2019.

5Patrizia Baudino and Jean-Philippe Svoronos. Stress-testing banks for climate change: A comparison of practices. FSI
Insights 34. Bank for International Settlements, July 2021.

6John Colas et al. Extending our horizons: Assessing credit risk and opportunity in a changing climate: Outputs of a
working group of 16 banks piloting the TCFD recommendations. Tech. rep. UNEP Finance Initiative and Oliver Wyman,
Apr. 2018.

7Matteo Gasparini, Moritz Baer, and Matthew C. Ives. “A re-evaluation of the financial risks of the net zero transition”.
In: Oxford Working Paper (2023), pp. 1–39.

8Moritz Baer et al. “TRISK: A climate stress test for transition risk”. In: Oxford Sustainable Finance Group (2022),
pp. 3–68.
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First, uncertainty in the scenario forecasts is due to the lack of information in the underly-

ing modelling behaviour and methods.9 The application of climate scenario trajectories for stress

testing is not easily or transparently conveyed to the financial sector and practitioners. Such vari-

ability, without sufficient information on what is driving forecasts, makes it increasingly difficult

for practitioners to judge the credibility or application of scenario trends for their own analy-

sis, including for climate stress testing.10 However, a better understanding of differences between

climate transition trajectories that drive the variation in the assessment of firm and financial per-

formance can help practitioners in the application of climate scenarios for evaluating climate risk.

While there is an extensive literature on the modelling and design of climate scenarios, how these

scenarios are applied to corporate and financial risk and strategy in the green transition has not

been widely studied. The choice of modelling techniques in a climate shock scenario is an important

consideration in stress test design, however the lack of analysis or transparency in the underlying

assumptions and uncertainties makes it hard to gauge the overall materiality of these choices.

Second, the design of a climate stress testing exercise has become an uncertain endeavour

for banks and supervisory institutions, since there is not yet a well–established methodology or

consensus on conducting such testing.11 There are several potential reasons for this, including the

wide and varying set of variables of interest that are either explicitly modelled or implicitly assumed

in a forward–looking stress test exercise. For example, the level and stringency of carbon taxes and

renewable subsidies which needs to be projected into the future for determining transition risks

are generally unknown, and hence are either derived from within a model using various techniques,

or exogenously imposed on the model, based on the primary factors of interest for the user.12

Similarly, interactions between large systems such as climate change and the macroeconomy are

difficult to specifically apply to transmission channels to derive the effects of high physical climate

risk on GDP growth.13 Prevalence of additional risks such as social, economic, and political factors

further confound the problem.14 These types of interactions and the mechanisms by which they

are compounded in the real economy and the financial system are not well–established, but have

been modelled in a variety of ways based on different sets of assumptions from process–based

climate–economy Integrated Assessment Models (IAMs). These IAMs can draw from the same

input data and the same assumptions about the future, but since the model environment within

9Mark M. Dekker et al. “Spread in climate policy scenarios unravelled”. In: Nature 624.7991 (2023), pp. 309–316.
10Kevin Tang and Francesca Pianosi. An input-output sensitivity analysis of climate-economy integrated assessment

models. Report. Centre for Greening Finance and Investment, 2024.
11Banking Supervision. Good practices for climate stress testing. Report. European Central Bank, 2022.
12Nicholas Stern. “The structure of economic modelling of the potential impacts of climate change: Grafting gross

underestimation of risk onto already narrow science models”. In: Journal of Economic Literature 51.3 (2013), pp. 838–859.
13Emanuele Campiglio et al. “Climate change challenges for central banks and financial regulators”. In: Nature Climate

Change 08.06 (2018), pp. 462–468.
14Jakob Thoma. How climate stress-tests may underestimate financial losses from physical climate risks by a factor

of 2-3x. Report. 1in1000, Theia Finance Labs, 2024.
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which climate and economic interactions are designed are different, this can lead to a wide range

of future projections that are key for assessing climate financial risk.

Several methodologies have been developed for climate stress testing to assess climate–related

risks to the financial system. Prominent methodologies include network–based climate stress testing

that examines how climate policies affect different sectors in the real economy with indirect effects

on financial sectors.15 Market–based climate stress tests have investigated the immediate expected

impacts on bank equity values from changes in climate risk along a range of horizons.16 The

TRISK framework assesses both market risk in the form of valuation, and credit risk in the form

of probability of default.17 A network approach to the hierarchy of financial dependencies looks

at how various climate policies create risk that are propagated through the financial system.18

Financial risk is also endogenous and can become amplified when there are overlapping portfolios

when two different financial institutions invest in common assets, creating a measure of systemic

risk.19 Other papers have reviewed such climate stress test methodologies used by central banks

and researchers.20

The objective of this study is to investigate the impact of the choice of climate scenario inputs

on climate financial risk assessment, and to determine whether the commonly used scenarios gen-

erate significant variability in financial risk depending on the underlying scenario assumptions and

the Integrated Assessment Model. For this purpose, we compare several climate scenarios with the

same overall temperature target of below 2°C from four different scenario providers – the Network

for Greening the Financial System (NGFS), the International Energy Agency (IEA), the Inevitable

Policy Response (IPR) and the Institute For New Economic Thinking (INET) at the University of

Oxford – into one comprehensive and consistent ‘TRISK’ climate transition stress testing frame-

work, developed and maintained by the 1in1000 initiative.21 This allows for the compilation of

several TRISK output metrics across a wide set of companies, according to various IAMs, and

several different narrative pathways.

Results show four main findings. First, on average, when applying a consistent stress test,

various scenarios under the same temperature target or policy ambition produces significantly

15Stefano Battiston et al. “Leveraging the network: A stress test framework based on DebtRank”. In: Statistics and Risk
Modelling 33.3 (2016), pp. 117–138; Andrew G. Haldane and Robert M. May. “Systemic risk in banking ecosystems”. In:
Nature 469.7330 (Apr. 2011), pp. 351–355.

16Jung Hee Noh and Heejin Park. “Greenhouse gas emissions and stock market volatility: An empirical analysis of OECD
countries”. In: International Journal of Climate Change Strategies and Management 15.01 (2023), pp. 58–80.

17Baer et al., “TRISK: A climate stress test for transition risk”, op. cit.
18Stefano Battiston et al. “A climate stress-test of the financial system”. In: Nature Climate Change 7 (2017), pp. 283–

290.
19Sebastian Poledna et al. “Quantification of systemic risk from overlapping portfolios in the financial system”. In:

Journal of Financial Stability 52.100808 (Feb. 2021).
20Fanny Cartellier. “Climate stress testing: An answer to the challenge of assessing climate-related risks to the financial

system?” In: SSRN (Aug. 2022).
21Baer et al., “TRISK: A climate stress test for transition risk”, op. cit.
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different results across power companies. Second, variability in company performance for a climate

stress scenario depends upon the type of technology for the power company. Third, findings indicate

that the more stringent the climate policy ambition, the less variability in risk between scenarios.

Finally, variability in company performance is similarly represented in financial risk in terms of

impacts on probability of default. Overall, we find that financial institutions and regulators need

to consider a broader set of models and scenarios in stress testing research, and that applications of

climate scenarios should consider bulk stress testing exercises as ranges rather than as a particular

discrete set of values.

3 Data and methods

3.1 Data

Conducting climate stress testing requires a set of forward–looking projections of the potential

trends and changes in the economy that shape the economic transition. As previously discussed,

Integrated Assessment Models develop large systems of climate and economic interactions to esti-

mate forecasts of trends of key variables that are used as inputs into climate stress testing exercises.

Since IAMs estimate climate–economy interactions in different ways, they will result in different

forecast trends, even if they are designed under the same parameters, such as the temperature

target or policy ambition. IAMs take the intended temperature target, policy ambition, and level

of coordination in a given year based on an assumed narrative of the future to produce forecast

trends of key strategic variables to the climate transition.

The most ambitious narratives assume global coordination to reach a net zero emissions target

by 2050. In contrast, the least ambitious narratives assume no further changes to countries’ climate

policies or international cooperation, thus allowing for continued emissions and temperature rises.

Alternatively, there are several narratives that are premised on varying levels of coordination

between countries, temperature targets, and policy objectives. As each of these narrative pathways

for how the climate transition will unfold are applied to each IAM, they will produce different

trends for how key variables and factors to the transition will reach that target. Each projected

trend of key transition variables produced by a model under a specified narrative pathway produces

a scenario of the future. As a projection of the future, there is a wide margin of error, hence any

scenario resulting from a particular narrative pathway–IAM combination should only be seen as a

representative trend, rather than the discrete forecast.

6



The NGFS scenarios provide four narrative pathways derived from three IAMs, each of which

provides scenarios that provide a wide range of policy and technological dimensions.22 In contrast,

the IEA uses a single model, the World Energy model (WEM), but has three narrative pathways

to model key variables for the energy sector.23 However, not all scenarios are produced from an

integrated assessment model environment. Key transition variables can also be produced from

other modelling techniques, including general or partial equilibrium models, such as those used

by IPR or Oxford.24 Despite the variety of modelling techniques and narrative pathways available

from different scenario providers, they can broadly be categorised according to narrative pathway

of the policy ambition or temperature target. Table 1 shows the different narrative pathways used

by each of the IAMs included in our analysis, and which pathways and temperature targets offer

the widest basis of comparison between IAMs based on the most common narrative developed.

Table 1: Climate–economy models according to different narrative pathways

IAM Net Zero 2050 Below 2°C Divergent Net Zero Delayed Transition

GCAM X X X X
REMIND X X X X
MESSAGEix X X X X
IEA X X
IPR X X
Oxford X

This paper utilises three types of data inputs to develop a unique climate stress

test measure of credit and market risk for each individual company in the dataset, which

includes a wide set of 3,419 power companies. The first data inputs are the climate–economy

scenarios, which project alternate trends of key variables affecting the economy and the financial

system including production for key sectors, potential carbon tax prices, and projections on the

evolution of technological change in power generation. The stress test estimates market and credit

risk for companies based on the difference between the company’s performance under a baseline

scenario compared to the shock scenario, where the shock scenario is the trend provided from

the same model but different narrative pathway. The baseline scenario for the NGFS Models i.e.,

GCAM, REMIND, and MESSAGEix, is Nationally Determined Contributions (NDC). Under the

NDC pathway, future trends of key transition variables are projected based on a future world in

which the only restrictions to high–emitting sectors, the amount of carbon emissions, and the level

22Thomas Allen et al. NGFS Climate Scenarios for Central Banks and Supervisors. Tech. rep. Network for Greening
the Financial System Macrofinancial Workstream, June 2021.

23International Energy Agency Secretariat. World Energy Outlook 2023. Tech. rep. International Energy Agency, 2023.
24Inevitable Policy Response forecast policy scenarios 2023. Tech. rep. Berlin, Germany: Inevitable Policy Response,

2023; Rupert Way et al. “Empirically grounded technology forecasts and the energy transition”. In: Joule 6.9 (2022),
pp. 2057–2082.
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of global coordination is simply based on what countries have agreed to commit to, without further

adjustments or increases.

For other models, the baseline scenario against which the shock scenario is compared is also

derived from the model under a similar narrative pathway as nationally determined contributions.

The baseline scenario for the International Energy Agency – World Energy Outlook (IEA–WEO)

uses the WEO Stated Policy Scenario (STEPS). For the Oxford–INET model it is a combination of

Oxford baseline scenario variables with some elements complemented from the IEA–STEPS. Due

to a lack of baseline scenario assumptions provided by Inevitable Policy Response (IPR) scenario,

the IEA WEO–STEPS scenario is adapted from the baseline reference for IPR–NZE, the IPR–

B2DS scenarios, and the IPR–FPS. To ensure consistency in the application of different scenarios

and the different baseline and shock scenarios, this analysis uses global scenarios and thus does

not fully capture regional decarbonisation pathways.

For this analysis, we have chosen the B2DS (‘below 2°Celsius global warming from pre-industrial

level’) as the main reference ambition (shock) scenario for all assessed models.25 The below 2°C

target has been recognised as a crucial threshold by the Paris Climate Agreement (UN, 2023) and

is considered as a desirable and a plausible scenario. Further, it is broadly aligned with the ‘Middle

of the road’ Shared Socio-Economic Pathway (SSP2)26 defined by the Intergovernmental Panel on

Climate Change (IPCC) (IPCC, 2022) and forecasted to be most ‘likely climate outcome’ by the

Inevitable Policy Response’s (IPR) latest forecast of global climate policies (IPR, 2023).27 While

the 2–degree target is the most likely scenario and may prevent the most threatening natural and

economic impact, scientific and political consensus has considered limiting warming to 1.5 degrees

Celsius as more desirable. This is reflected in the Net Zero ambition, for example, IEA’s Net

Zero scenario (NZE) presents a roadmap for the energy sector to transition to a net zero energy

system by 2050 with a 50 percent chance of limiting the global temperature rise to 1.5°C without

a temperature overshoot.

While some scenario providers and their models may provide data for a longer horizon (i.e., until

the year 2100), all scenario horizons considered in this assessment have been limited to the year

2050. This is for two reasons. Firstly, this allows better comparability across a varied set of scenario

horizons considered. Second, the TRISK framework estimates the climate financial impacts from a

25The ambition scenarios for these models are NGFS B2DS, IEA Sustainable Development Scenario (SDS), IPR Forecast
Policy Scenario (FPS) and Oxford INET Fast Transition Scenario (FTS), which have a similar level of ambition below 2
Degree C.

26The SSPs are socio–economic scenario assumptions about expected economic, societal, and demographic conditions
and driving forces. They have been defined and updated by IPCC, in the 6th Assessment Report, published in February
2022 (IPCC, 2022).

27The Inevitable Policy Response’s (IPR) forecast is informed by live tracking of over 300 climate policies over the past
two years, as well as input from over 100 climate policy experts across 12 countries, concludes that the world will likely
achieve the Paris Agreement goal of limiting temperature increase to ‘well below 2°C’ (IPR, 2023).
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transition risk technology shock that is set to occur before the year 2050 for all assessed scenarios

and models, since beyond 2050 the discount rate becomes marginal.

The second type of data inputs includes highly granular company business unit production data

for 3,419 companies, including information on production activity, such as business unit production

plans, and ownership structure, provided by Asset Impact Physical Assets Matched with Securities

(PAMS) dataset.28 The key aspect of the asset-based production data is that it is forward-looking

which includes information both on the company’s production capacity today and the production

plans going forward by 5 years. This allows company-specific assessments on market risk and credit

risk based on asset-level production shocks, and differences in carbon pricing policies between

countries based on the asset location.

The companies in this analysis are a sample of the universe of production companies that

can be provided by Asset Impact PAMS database, but are limited in two ways. First, we only

cover companies that operate in the Power sector. Second, we only cover companies which exhibit

variability for the initial 5-year production forecast period. Companies with constant production

forecasts in a specific technology show largely similar percentage NPV changes when transitioning

from a baseline to a stress scenario. The reason behind this is that they adhere to a consistent

growth trajectory in baseline and target pathways, dictated by their chosen technology in the power

sector. While absolute difference between the companies might be significant, the relative change

between baseline and target pathways remains the same for these companies. Therefore, to identify

results apart from the clusters that can be generated by the constant production mechanism, in this

paper, we have limited the sample data to cover only companies with variable production forecasts.

The third type of data inputs are the company-level information on company finances and

financial risk profiles- provided by Refinitiv Eikon. This includes data on market capitalisation,

asset volatility, structural leverage ratio, and net profit margin. The financial data is available

only for publicly listed companies and for companies that are not publicly listed and tracked on

Refinitiv Eikon. The missing data entries are completed using average values of those variables of

companies in the same sector and country.

3.2 Methodology

The data inputs are connected through a set of transmission channels, which propagates the

climate–adjusted economic impact to the asset value of firms, and subsequently translates the

28Understanding climate impacts with asset-based data. White paper. Paris, France: Asset Impact, 2023.
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impacts into financial market and credit risk. The model framework is composed of the fol-

lowing three main methodological ‘layers’: 1) construction of company–level climate financial

scenario pathways, 2) calculation of the real economic impact assets and firms, and 3) climate

adjusted impact on financial institutions. The difference in financial market risk i.e., transition

related changes in the net present valuation (NPV), and credit risk i.e., transition related changes

in the probability of default (PD) – across a set of global energy firms in the power sector using

the TRISK model for each of the models and scenarios included in Table 1 is estimated through

the transmission channels illustrated in Figure 1.

Fig. 1: Representation of the key model layers, stylised overview of the climate stress testing
framework and its transmission channels.

The first layer of the TRISK framework translates input climate financial scenarios into sector–

level decarbonisation pathways, and subsequently into technology–level changes to individual

company production capacity. The level of each company’s decarbonisation effort is determined by

the alignment of the company with a decarbonisation pathway (using the forward–looking produc-

tion plans) and the respective market share of that company within a particular production sector.

Three types of decarbonisation production pathways are constructed: (i) baseline, (ii) climate tar-

get, and (iii) climate transition shock pathway. The baseline production pathway describes a state

of ‘business as usual’ wherein the production pathway reflects no climate ambition beyond what is

assumed in the company’s forward-looking production plans. The climate target pathway projects

a sustainable mode of production, as it already has been on a path of climate transition presently

as well as in the future as determined by the input climate scenarios. The key decarbonisation

pathway of interest is the climate transition shock scenario which accounts for the technology and

asset-level production migration from the baseline pathway towards the target pathway in a defined

policy ‘shock year’ which is 2030 in our analysis.
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The second layer interacts with the company’s decarbonisation pathways with real economic

projections on costs, price, and general economic developments, as well as company’s financial risk

profile. The shock scenario pathway determines the firm cost structure and production mix across

technologies and business units (e.g., electricity produced from solar power plants or coal-fired

power plants) and impacts their income and profitability. Production trajectories are taken from

climate scenarios as shocks to the TRISK framework, and are treated in two different ways for

carbon–intensive and low carbon technologies. For high carbon technologies, trajectories are based

on the growth rates implied for each technology over time, as given in each climate scenario. In

contrast, for low carbon technologies, the trajectories are derived from the technology’s relative

share in relation to the total sectoral production over time. This allows for a better estimation of

the build–out of companies that operate multiple technologies within the power sector, as well as

for those planning production expansions in the coming years but with no production realised in

the starting year. Company–level impacts are translated into profit and cashflow projections based

on technology–specific production shocks, and subsequently via discounted cash flow models into

asset and equity valuation changes.29

In the third layer, the model estimates the market and credit risk of companies. In this case,

company market risk is assessed based on the change in the net present value (NPV) of a company

derived from the baseline scenario. The latter is essentially the value of a company according to

the gradual policy changes according to the nationally determined contributions (NDCs) of the

country in which the company is located. This is compared to the adverse shock test scenario,

which determines the value of the company according to various climate scenario trajectories that

involve more stringent reductions in emissions and higher rates of carbon pricing than the current

policies or the projected NDCs. The difference in the valuation change under the baseline scenario

and the shock test scenario is the measure of transition market risk. Building on the company-level

changes in valuation under the shock scenario calculated via a discounted dividend flow model,

the changes in company-level asset valuation impacts enter a time-horizon adjusted Merton credit

risk framework to estimate the impact on firm-level probability of default (PD). The company

PDs are calculated both for the baseline and the shock scenarios, with the main output being the

difference between these scenarios – which is the additional impact on company–level PD as a

result of climate transition shock.

The 1in1000 TRISK engine holds all of the separate asset and financial datasets used as inputs

into the TRISK model and computes the key metrics of transition risk. In order to isolate the effect

29Simon Dietz et al. “’Climate value at risk’ of global financial assets”. In: Nature Climate Change 6 (Apr. 2016),
pp. 676–781.
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of the different scenario pathways on the financial market risk and credit risk we keep all other

TRISK model assumptions constant. This study follows the work by Gasparini et al. (2022), which

provides an overview of the qualitative and quantitative differences across these scenarios and may

be referred to for better interpretability of our results.30 By applying a consistent TRISK model

to a variable set of climate scenarios and pathways, we observe the extent to which uncertainty in

climate scenarios has implications in the assessment of corporate and financial transition risk.

In order to compare differences in climate risk depending on the selection of a particular climate

scenario or pathway, this paper integrates a variety of models according to the same temperature

target and policy ambition across the different scenario providers according to table 1. We show

the difference in financial market risk based on the transition related changes in the net present

value and credit risk transition related changes in the probability of default for a set of global

energy firms. It is expected that there may be some differences in the transition risk performance

of firms based on the different models, however not necessarily that this should significantly affect

the performance of individual companies or differ from one scenario to another for the power sector

overall, given that the same temperature target and policy pathway is being input to a consistently

applied climate financial stress test.

4 Results: Impact on valuations

4.1 Differences in distributions of NPV changes

4.1.1 Below 2°C pathway

Applying the TRISK climate stress test model using different future trajectories provided by

scenarios from table 1 produces two outputs. First, is the impact of the climate stress scenario

on companies in terms of the effect on a company’s net present value. The second output is how

changes in net present value from the company translate into financial portfolio losses in terms of

probability of default. This paper looks at each output of the TRISK model separately, beginning

with the impacts of each shock scenario on company’s projected net present value.

Scenario providers develop trajectories for how the global economy will transition to reach spec-

ified global temperature targets based on specific policy ambitions, and broad assumptions of how

smooth or rough that transition will be for countries, economies, and sectors. The scenarios anal-

ysed and their providers have been broadly categorised according to the temperature target, policy

ambition and coordination, and technological evolution. Although it is expected that trajectories

30Gasparini, Baer, and Ives, “A re-evaluation of the financial risks of the net zero transition”, op. cit.
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should vary between scenario providers, the extent to which they vary, and the impact that such

variability has for assessment of climate risk has not been observed.31 By applying the TRISK

methodology to each of the climate scenarios using the same narrative pathways, implications of

the variability in climate scenarios is observed from variability in the impact of the scenario on

company NPV change.

At first glance, the distribution of most companies’ impacts show similar shapes

across IAMs for either pathway. Figure 2 shows the shape of the distribution of the impacts

on NPV for all power companies in the dataset, based on either the below 2°C or net zero 2050

narrative pathways. Company impacts under REMIND show the highest central density, while

GCAM and MESSAGEix show similar shapes. Overall, most companies show a slight improvement

with a positive NPV change under the stress scenario represented by the density of companies on

the positive side of the distribution. The high peak of positive distribution in company performance

is due to the large number of renewable power companies that are included in the dataset. These

companies are generally smaller than other technology types of power companies, as defined by

their smaller market cap. Conversely, for both pathways, there is also a second, smaller peak

density of companies that show a negative NPV change under the stress scenario, which is for

the fewer number, but higher market cap power companies including thermal energy companies.

Furthermore, bilateral scenario spearman correlations of NPV as shown in table 2 indicate that

they are well–correlated.

(a) Below 2°C (b) Net zero 2050

Fig. 2: Distribution of NPV changes on power companies based on different scenario providers
under the below 2C and net zero 2050 narrative pathways.

31Joeri Rogelj et al. “Emission pathways consistent with a 2C global temperature limit”. In: Nature Climate Change
1.8 (Nov. 2011), pp. 413–418.
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However, in–depth statistical tests show significant differences even within the

same narrative pathway, with some exceptions. Although figure 2 shows a similar distri-

bution of NPV change for power companies under both pathways, this is more formally analysed

according to the Wilcoxon signed–rank test. Considering the shape of the distributions of NPV

changes for companies under each IAM scenario in figure 2, the distributions require a non–

parametric test of the TRISK set of NPV change values, matched according to each power company.

Taking the distribution of NPV changes for each of the IAMs under the same pathway of either

reaching net zero by 2050, or achieving below 2C, the Wilcoxon test determines the significance

of the differences in NPV change between matched companies under each IAM. The differences

between matched pairs on company NPV change is ranked according to the magnitude of difference

across all company NPV change bilateral scenario pairs in table 2.

The analysis determines the extent to which the magnitude of difference in company NPV

change under two different shock scenarios represents a significant difference in the median NPV

change between the two scenarios. Across all power companies, the test illustrates whether a

stress test for power companies under different shock scenarios represents a significant difference

in aggregate NPV changes, or if the shock scenarios represent similar NPV impacts because they

still align to the pathway of either reaching net zero 2050 or below 2C.

Although it is expected that different scenario providers show some degree of difference in tra-

jectory for the same temperature target or policy ambition, how these differences in trajectories

are further propagated through subsequent financial risk measures, or the extent to which it would

be expected, has not been established. While there is an expectation of some variability in com-

pany performance under different climate scenario pathways, whether the choice of one scenario

over another should lead to significantly different results in company performance under the same

pathway would represent a significant representation of risk for the company and the financial

institution. Since trends on key economic transition variables are used as inputs by financial insti-

tutions to estimate future risk, understanding the magnitude of difference between shock scenarios

under the same narrative pathway is an important consideration for the application of scenarios.

Table 2 shows the results of the Wilcoxon test for the absolute value difference measured in US

dollars between bilateral pairs of climate scenarios NPV change under the TRISK framework, as

well as whether or not differences in company impacts on shock scenarios are significant. From the

table, the magnitude of difference in company valuation represents a high range in NPV changes

under each of the shock scenarios, with the minimum absolute value difference in company per-

formance representing over 4 million USD, and the greatest absolute value difference representing
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nearly 8 million USD. These findings indicate that for a company’s assessment of climate transition

risk, using the narrative pathway of meeting the below 2°C target, the estimated in NPV change

will range from a median gain or loss of USD 4 million to 8 million, depending on the selection of a

scenario. However, these values only represent the difference in median value of change, but repre-

sent a much wider range for individual companies, given the significant differences in distributions

of NPV change.

Additionally, as a measure of comparison to the Wilcoxon test, the paired t–test is also included.

Since the shape of the distributions in figure 2 indicate some evidence of normal central tendency,

the paired t–test results are used as a normalised parametric comparison measure, according to

the standard deviation of difference in the number of pairs. Both tests – Wilcoxon and t–test – are

measures of the variations of differences in distributions in NPV change for companies according

to the shock scenario, with larger values for either test indicating a larger average difference in

distribution.32 Additionally, the correlation in NPV change for the set of power companies between

two scenarios is also included.

The table shows results of the bilateral scenario comparison under the ‘below 2C’ narrative

pathway. From the table, in nearly all cases, the TRISK results show that a company’s NPV

change under one scenario significantly differs from another, since nearly all t–test results show a

significant difference in the distributions of NPV change when compared to any other under the

same narrative pathway, based on the p–value. Differences in distribution are further confirmed

under both Wilcoxon and standard t–test. The only bilateral pair of scenarios that do not show

a significant difference in company NPV under the ‘below 2C’ pathway are between the NGFS–

GCAM scenario, and the IPR scenario, indicating that the choice of either scenario for the stress

test will lead to similar results in company performance.

The Oxford scenario shows the highest magnitude of disagreement according to

Wilcoxon, the greatest magnitude difference for t–test, and some of the lowest corre-

lations compared to all other scenarios.33 These findings are expected considering that the

‘Oxford–fast’ trajectories in the TRISK framework are not modelled in a general or partial climate–

energy–economy equilibrium environment within an integrated assessment model like the other

scenarios, but instead are based on time–series probabilistic forecasting methods of key energy

technologies. The trajectories from the ‘Oxford–fast’ scenario are projected only on technology cost

32The Wilcoxon test provides a difference in distributions measured in changes in USD. Since the t–test uses normalised
values, they can broadly be categorised as anything above 20 as being high, between 10 and 20 as medium, and anything
below 10 as being low.

33Gasparini, Baer, and Ives, “A re-evaluation of the financial risks of the net zero transition”, op. cit.
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conditions, which are subsequently forecast onto deployment, rather than projecting both deploy-

ment and cost conditions onto policies in a larger integrated framework. Hence, modelling only the

cost conditions, the relationship between technology costs and the rate of deployment is premised

on the assumption of the experience curve or learning rate. In the ‘Oxford–fast’ scenario, the expe-

rience or learning rate is modelled on the basis of Wright’s law.34 The modelling of technologies on

the basis of Wright’s law therefore imposes a set of assumptions on the shape of the learning curve,

and subsequently the rate of deployment and technology costs. This modelling subsequently repre-

sents key differences in the climate risk variables, which suggests the wide magnitude of difference

in NPV change when forecast variables are input into TRISK.

Table 2: Difference in distributions of TRISK results on NPV change based on
shock scenario for below 2C pathway

Shock scenario A Shock scenario B Wilcoxon t–test Wil. p–value Correlation

Oxford–fast WEO SDS 7706611 34.432 1.84E-116 0.9228
NGFS MESSAGE WEO SDS 7218272 19.16 1.90E-64 0.9565
NGFS MESSAGE NGFS REMIND 6954966 12.575 1.03E-43 0.9185
IPR FPS WEO SDS 6500447 5.773 9.51E-16 0.9307
NGFS GCAM WEO SDS 6441419 7.065 1.15E-13 0.9625
NGFS GCAM NGFS REMIND 6213285 0.046 1.97E-06 0.9267
NGFS REMIND WEO SDS 6205468 7.287 5.35E-06 0.9399
IPR FPS NGFS REMIND 6093202 0.999 1.51E-03 0.9243
IPR FPS NGFS GCAM 5901780 1.006 4.21E-01 0.9405
IPR FPS NGFS MESSAGE 5152400 12.35 4.97E-17 0.8945
NGFS GCAM NGFS MESSAGE 4975324 11.933 1.24E-25 0.9620
NGFS MESSAGE Oxford–fast 4519909 27.474 5.04E-58 0.9291
IPR FPS Oxford–fast 4180702 31.754 1.15E-91 0.9318
NGFS REMIND Oxford–fast 4170348 31.827 6.51E-92 0.8667
NGFS GCAM Oxford–fast 4161006 31.596 4.45E-93 0.9421

However, MESSAGEix also shows a high disagreement despite supposedly simi-

lar underlying assumptions. Given the difference in model framework of the Oxford scenario

compared to others, the high and significant magnitude difference may be expected, especially

considering the shape of the distribution of NPV changes from figure 3. However, perhaps unex-

pectedly is that the magnitude of difference is second highest for the MESSAGEix scenarios, since

it is similarly built within a general equilibrium environment of an integrated assessment model,

and parameters are set in the same way as the REMIND or GCAM IAMs, since they all were pro-

vided by NGFS. As one of the three NGFS scenarios used in the TRISK analysis, findings from

table 2 showing the MESSAGEix results with such a wide magnitude of difference relative to both

34Wright’s law has been widely applied in energy system models. The Oxford model extends Wright’s law to provide an
estimate of the probability distribution of future technology costs, thus providing an estimate of forecast uncertainty.
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other NGFS scenarios as well as other non–NGFS scenario providers is indicative of the signifi-

cant impact that the choice of scenario can have on the assessment of climate risk for financial

institutions.

Despite significant differences in distribution of company impacts from shock scenarios over-

all, bilateral scenario spearman correlations of NPV show that they are still highly correlated.35

Although scenario pairs in table 2 have been ranked according to wilcoxon, across all scenario

pairs, correlation coefficients are similar magnitudes, despite the difference in rankings according

to overall distribution. This suggests that despite differences in the overall distribution company

NPV change, individual pairwise company performance is still similar between two companies,

based on the high correlations. This is further observed based on the linear relationship of NPV

change between pairwise shock scenarios in figure 3.

At company level, this disagreement could mean opposite impacts, depending on

the scenario choice. This is further observed from the linear relationship of NPV change between

pairwise shock scenarios in figure 3. Figure 3 illustrates the bilateral relationship in a company’s

NPV change based on two different shock scenarios. The bilateral pair of scenarios are shown

as a scatter plot of the relative change in company NPV from the TRISK model under the two

scenarios, where the 45 degree line represents agreement in the company NPV change between

the two scenarios. The figure is separated into coloured quadrants to highlight the direction of

the difference in NPV change for companies based on the scenario. The blue and red quadrants

indicate agreement between scenarios where companies are shown to either improve in positive NPV

change under both scenarios in the blue quadrant, or lose with negative NPV change under both

scenarios in the red quadrant. Importantly, are the green and yellow quadrants where companies

show disagreement in NPV change with one scenario indicating a positive NPV change, and the

other showing a negative change.

From the figure, there are several companies that fall into the green and yellow quadrants

indicating disagreement in company performance based on the shock scenario. This suggests a high

risk to companies for assessing resilience to transition risk since they show opposite performance

under stress. Differences in the positive or negative NPV change for companies, along with the

overall magnitude of difference between scenarios demonstrate wide ranging implications and highly

variable evaluation of risk when using climate scenarios.

35Spearman rank correlation is used over Pearson because Pearson assumes a normal distribution, while Spearman does
not. Additionally, given the wide range of companies and the spread of outliers, Spearman is more robust to those outliers.
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(a) Message – WEO (b) Message – Remind

(c) IPR – WEO (d) GCAM – WEO

Fig. 3: Distribution of company NPV change by bilateral scenario pairs for below 2C pathway

4.1.2 Net zero 2050 pathway

To compare results from different pathways, table 3 shows the NPV change to companies by a set of

scenarios provided under the net zero 2050 pathway, with differences in scenario pair distributions

ranked by the magnitude Wilcoxon test. As previously illustrated from table 1, there are less

scenarios that are broadly aligned with the net zero 2050 pathway, so the comparative sample of

scenarios is smaller.

Despite the smaller sample, comparisons in the distribution of NPV change under the net zero

2050 pathway show some interesting findings. First, all scenarios represent significantly different

distributions of NPV change, indicating that the selection of the particular climate scenario being
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applied to a stress test is a significant determinant in the assessment of company risk and impact,

regardless of the broad agreement in the temperature target or policy pathway. Second, the range

in the absolute value difference in magnitude of valuation is similar under net zero 2050 as below

2C, with the largest difference near 7 million USD, and the smallest 4.5 million USD. Under both

pathways, this represents significant differences in corporate NPV change. Third, the ranking of

scenarios according to the magnitude difference in distribution according to the wilcoxon test is

consistent with table 2 for the below 2C pathway, where the scenarios representing the largest

differences are MESSAGEix and REMIND.36

Although MESSAGEix and REMIND feature prominently at the top of the table by average

difference in distribution of NPV changes, there is wide disagreement amongst all NGFS–provided

scenarios, with GCAM also showing a high degree of differences between each other according to

the rankings based on the Wilcoxon test. This demonstrates high variability in corporate risk based

not only on the pathway, but also within the same scenario provider, since the IAM parameters

for all NGFS scenarios would be the same, as they are designed around the specific assumptions

of the same narrative pathway of either below 2C or net zero 2050. That the three IAMs used

by NGFS show such wide ranging differences in the distribution of NPV change based on net

zero 2050 indicates significant differences arise from the IAMs themselves, and less so based on

the particular parameters used by the scenario provider. Therefore, selection of a climate scenario

for the purposes of financial risk assessment needs to consider not only the narrative pathway

of the economic transition, but also the scenario provider, the particular set of assumptions and

parameters taken by the provider, and the type of modelling used in developing trajectories.

Table 3: Difference in distributions of TRISK results on NPV change based on
shock scenario for net zero 2050 pathway

Shock scenario A Shock scenario B Wilcoxon t–test Wil. p–value Correlation

NGFS MESSAGE NGFS REMIND 6848205 12.427 3.77E-36 0.9194
NGFS GCAM NGFS REMIND 6255199 1.025 1.36E-07 0.9264
NGFS MESSAGE WEO 6244842 5.769 5.40E-07 0.8601
IPR RPS NGFS REMIND 5602660 5.301 0.004 0.9282
NGFS GCAM WEO 5399288 4.646 8.36E-08 0.9116
IPR RPS NGFS GCAM 5162882 5.528 1.47E-16 0.9564
NGFS REMIND WEO 5129039 6.159 4.94E-18 0.9365
NGFS GCAM NGFS MESSAGE 4987461 10.433 5.91E-25 0.9313
IPR RPS WEO 4881874 10.138 4.04E-32 0.8923
IPR RPS NGFS MESSAGE 4612709 15.914 6.64E-51 0.9441

The results from table 3 broadly demonstrate that the choice in scenario and pathway represent

significant differences in evaluating climate transition risk across the set of global power companies.

36The ‘Oxford–fast’ scenario does not feature in table 3 because that is not the broad narrative pathway, and hence is
not included in comparisons of other net zero 2050 scenarios.
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Differences in the distribution of NPV changes show that conducting a stress test based on a

climate stress scenario can vary significantly based on the choice in scenario used, even when they

are premised on the same pathway. However, while analysis of the distribution of NPV change

represent a significant difference in magnitude of impact in aggregate, the positive or negative

direction of the difference for individual companies from one scenario to another has not been

observed from analysis of the overall distribution of NPV changes by company.

Despite results showing that the distribution of NPV change significantly differs based on each

scenario, the bilateral pairwise extent of that difference measured according to correlation is not

very high. Across all bilateral scenario pairs in table 3, company NPV changes are highly correlated,

indicating broad agreement in company performance under different scenarios. However, this does

not account for outliers or disagreement in company performance between two scenarios, which

could still be widely present despite high correlations. Figure 4 plots the relationship in company

performance between two net zero 2050 scenarios according to the top four highest magnitude

differences between scenarios distributions in table 3.

Evidence from figure 4 show that despite high correlations between scenarios, significant dif-

ferences in the distribution of company NPV changes are observed in the relationship between

scenarios. First, across all plots, there is a wide distribution in company performance, even when

scenarios agree in positive or negative NPV change in the blue and red quadrants. Second, simi-

lar to results from scenarios under the below 2C pathway, there are several cases where scenarios

disagree in company performance in the green and yellow quadrants. Observations from figure 4

illustrate that despite high overall correlations between scenario pairs, significant differences in

the distribution of NPV change between two scenarios can lead to wide ranging variation in NPV

change for individual companies. This can have significant implications for how companies and

financial institutions assess risk based on the scenario and pathway they use.

Results in sections 4.1 and 4.1.2 have looked at the overall distribution of NPV changes for

a global set of power companies, showing significant differences in the distribution of impacts on

companies based on the scenario that is input to the TRISK model, even when scenarios are

mapped to the same narrative pathway. While most scenarios show broad agreement in the impact

of shock scenarios on companies in terms of positive or negative change in NPV, the range in NPV

change between two scenarios can represent significantly different values, and hence difficulty in

assessing risk. This can be particularly problematic for companies when one scenario shows an

improvement in NPV, and another scenario shows that company losing value. This occurs for a

significant share of global power companies in the dataset across all scenarios under either pathway,
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(a) Message – Remind (b) Gcam – Remind

(c) Message – WEO (d) IPR – Remind

Fig. 4: Distribution of company NPV change by bilateral scenario pairs for net zero 2050 pathway

and is therefore not a particularly outlying case of individual companies, but rather systemic to

the choice of scenario.

4.2 Variability in NPV changes: Assessment of company performance

from a technology focused analysis

4.2.1 Below 2°C pathway

While analysis has looked at the overall distribution of NPV effects according to each scenario

across the full set of global power companies, how these differences are translated or represented for

individual power companies has significant implications for financial institutions in the assessment
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of transition risk. Previous analysis has looked at differences in NPV effects of climate shock

scenarios according to the overall distribution of impacts based on each scenario and pathway. In

this section, analysis looks at how these differences in distribution of NPV impacts the variability

and uncertainty in the assessment of transition risk according to each company.

From the list of scenarios under each pathway in table 1, for each scenario in each pathway,

the impact of the shock scenario is generated for each company’s NPV. The results of the NPV

change for each scenario and company are aggregated into two different measures to observe the

dispersion and variability of a scenario’s assessment of a company’s transition risk.

First, a simple measure of dispersion of NPV effects per company is taken as the range of the

percentage change in NPV between the baseline scenario and the shock scenario for each company,

or the difference between the largest percentage change in NPV minus the smallest percentage

change in NPV across all scenarios within a specified pathway.

However, while the range in percentage change values may be a good indicator of dispersion,

it does not account for the presence of outliers in potentially skewing this dispersion, which could

be the result of one outlying scenario’s impact on the assessment of a company’s performance, as

suggested from the magnitude of difference in distributions of NPV changes observed in sections

4.1 and 4.1.2.

Second, to account for the potential role of outlier scenarios on company performance, the

variability of results within the given range of percentage change impacts is observed according

to the coefficient of variation. The coefficient of variation measures the standard deviation in

NPV changes for each company relative to the mean change. As a standardised measure, it allows

for comparison of the variability of NPV changes between companies irrespective of the size or

individual profile of one company over another. It is calculated as the ratio of the standard deviation

to the mean of NPV for each company.

Disagreement in company–level performance is technology dependent. Previous anal-

ysis from figure 4 shows the relationship of NPV results across all power companies in the dataset,

with large clusters of companies showing agreement between the MESSAGEix and the REMIND

scenarios in the first and third quadrants, representing positive increase and negative loss in NPV

respectively. However, agreement in company performance under the two shock scenarios in the

first and third quadrants is not random across companies, but related to technology type. This is

also true for companies in the second and fourth quadrants representing disagreement in company

performance between the two scenarios, where disagreement in how a company performs is also

related to uncertainty in a shock scenario depending on the type of technology. Therefore, to more
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systematically observed the dispersion of NPV changes across scenarios, companies are separated

according to technology.37

The comparative analysis of the dispersion and variability of NPV changes for companies is

evaluated across scenarios and according to technology type under the ‘below 2C’ pathway in figure

5. Companies are disaggregated according to six different technologies; three types of thermal

energy for oil, coal, and gas, one for renewables including solar and wind, and separately for nuclear

and hydroelectric. From the dispersion and variability of company performance by technology,

there are three trends that can be observed.

First, transition renewables (solar, wind) show gains in NPV, whereas fossil fuels

(oil, gas, coal) show losses. This is that similar to what has been observed in the previous

figure 4, there is clustering of agreement across scenarios based on the technology type. For each

technology, nearly all companies show either a positive increase in NPV.

Second, scenarios with wider dispersion in company NPV change also show higher

variation. Across plots in figure 5, it is generally observed that the higher the range in NPV

change is associated with a greater absolute value in the coefficient of variation. These trends are

most clearly observed for oil, gas, and coal, which exhibit clear trends in the relationship between

the range of percentage change and the coefficient of variation.

The trend is similar for renewables, but all renewable companies show an improvement in

NPV across scenarios in plot 5a. Additionally, while there are clear trends and broad agreement

in company performance across scenarios for oil, gas, and coal, this is not the case for hydro and

nuclear in plots 5e and 5f which do not exhibit any clear trend or relationship between range in

percentage changes and variation in NPV. This suggests that there is a general consensus across

‘below 2C’ scenarios in the modelling of key technologies such as oil, coal, gas, and renewables,

while modelling for the use of hydro and nuclear is less well established or agreed upon in the

scenarios.

Third, plots in figure 5 generally show that company variability and dispersion are consistent

across scenarios, being either in agreement of positive or negative impacts under the shock scenario.

Plots in figure 5 identify whether a company’s NPV performance is consistent or inconsistent in

positive or negative change across scenarios. Blue coloured data points indicate consistency for

the company as either showing positive NPV change across all scenarios, or all negative. Orange

coloured data points indicate inconsistency, where some scenarios show positive NPV changes for

the company, while others show negative. For the three fossil fuel types and for renewables, most of

37Future trends on energy production by technology are extracted from each of the shock scenarios. For each technology,
scenario, and pathway, there are different trajectories which are applied to each company. Further discussion on technology–
specific trends for each scenario and pathway can be found in section 8.1.
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(a) Renewables (b) Coal

(c) Oil (d) Gas

(e) Hydro (f) Nuclear

Fig. 5: Coefficient of variation in NPV by range of percentage change in NPV across ‘Below 2C’
scenarios. The x–axis shows the coefficient of variation, which can be positive or negative based
on the average NPV performance of the company across all scenarios. The y–axis shows the total
range of percentage change in NPV as the largest minus the smallest percentage NPV change for
a company, with the higher value indicating the wider the range in company performance across
the ‘below 2C’ scenarios. Blue coloured data points indicate consistency for the company as either
showing positive NPV change across all scenarios, or all negative. Orange coloured data points
indicate inconsistency, where some scenarios show positive NPV changes for the company, while
others show negative.
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the data points are coloured blue, indicating that all ‘below 2C’ scenarios show consistent negative

or positive performance.

However, the opposite is the case for hydro and nuclear, with nearly all data points showing

orange, representing disagreement in positive or negative performance between the six scenarios in

the ‘below 2C’ pathway. Disagreement in NPV change under hydro and nuclear also reflects the

uncertainty with which different scenarios treat the uptake of these technologies in reaching the

‘below 2C’ pathway, which is also apparent in the lack of a relationship between the range in com-

pany performance and variation in NPV. For these technologies, there can be large disagreement

between scenarios based on phase–out or build–up. This in turn affects whether the profit reduc-

tion mechanism embedded in the TRISK framework is applied to the company or not, which is

premised on the loss of profits for companies that have not strategically planned to build out the

relevant technologies.38

Hence, while broad trends and can be observed from assessing the impact of shock scenarios

on company performance according to technology type, given the wide range in percentage change

for companies, as well as the high levels of variation in NPV, this represents significant differences

in scenario assumptions for each technology. Findings show that differences in distribution of NPV

change by scenarios from sections 4.1 and 4.1.2 represent significant uncertainty for company

performance.

There is a high degree of variability in individual company performance based on the

choice of scenario being applied. This is the case for a subset of oil, coal, and gas companies, as well

as nearly all hydro and nuclear companies. The range in company performance and variation has

been so high for some technologies that it yields almost no insights of company performance with

a range in percentage change NPV being essentially 0 to 100 percent, and in some cases showing

both positive and negative NPV impacts. Hence, given the differences in the distribution of NPV

changes according to each scenario, the choice of climate scenario can lead to significantly different

assessments of climate transition risk for different types of companies.

4.2.2 Net Zero 2050 pathway

In order to compare results in company performance under the ‘below 2C’ pathway, measures

of variation and percentage change in NPV have similarly been compiled for the same set of

38The amount of deducted profits depends on a ratio calculated within TRISK, which compares a company’s projected
forward looking production plans over the next five years with the required production for the same period. The required
production is defined as a climate–aligned production trajectory, which in turn is given by the selected target scenario. The
goal of this mechanism dampens the profits for companies that have not strategically planned to build out the relevant
technology. Although this mechanism is still primarily influenced by the choice of scenario, it can lead to variations in
outputs even when scenarios show only small differences, particularly for technologies such as hydro and nuclear. Thus,
without this TRISK mechanism, the outputs calculated for nuclear and hydro could be partly different and its critical to
be aware of the model mechanisms that can affect the results alongside to the scenario uncertainty.
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companies, but stress tested under the more stringent objective of reaching net zero by 2050

pathway.39 The trends in variation and range of percentage change of NPV are shown in figure 6.

Broadly, trends show similar findings as described from section 4.2 under the ‘below 2C’ path-

way. However, there are some key differences under the more stringent ‘net zero 2050’ pathway

that are worth highlighting.40

First, for renewables (solar, wind), and some fossils (oil, gas), the variability reduces

with a faster transition. For renewables, oil, and gas companies in plots 6a, 6c, and 6d , the

level of absolute value variation is lower, with the maximum absolute value coefficient of variation

under all three technology types being less than 80. In contrast, under the ‘below 2C’ pathway, the

maximum absolute value variation is typically greater than 150. This finding demonstrates that for

these three technologies under the more stringent ‘net zero 2050’ pathway, there is greater alignment

of scenarios in the assessment of company performance compared to the less stringent ‘below 2C’

pathway. A similar study analysing climate scenario trajectories has also found a narrowing of

policy choices across scenario providers with more stringent targets.41 Therefore, for gas, oil, and

renewables, there is consensus across scenarios that a faster and more orderly transition would lead

to a more aligned and consistent determination of market risk.

This is particularly true in the case of gas and renewables. Under the ‘below 2C’ pathway,

scenarios show wide disagreement in performance and risk of companies, represented by the larger

number of disagreeing positive and negative performing companies, and by the much higher levels of

variation at nearly 100 in absolute value variation. By contrast, under the ‘net zero 2050’ pathway,

the same companies do not show any disagreement in performance, with all showing consistent

loss in NPV, with the level of variation generally less than 20 in absolute value. Additionally,

renewables show much lower variation of their positive NPV change at less than 60 under ‘net zero

2050’ compared to more than 150 under ‘below 2C’ scenarios. The range in percentage increase is

also less variable for renewables at less than 200 under ‘net zero 2050’ and greater than 1000 under

‘below 2C’.

Second, for coal, nuclear, and hydro the variability does not reduce with a faster

transition, where the alignment of scenarios for gas, oil, and renewables is contrasted with the

performance of coal, hydro, and nuclear in plots 6b, 6e, and 6f. For these three technologies, there

39There are a different number of scenarios included under the ‘net zero 2050 scenarios’ than for those categorised as
‘below 2C’. This could lead to higher variation and range in distribution due to the inclusion or exclusion of extra scenarios.
Based on the categorisation of scenarios in table 1, the Oxford scenario is only features in the ‘below 2C’ scenario and
not for ‘net zero 2050’. As a check for robustness of findings, the same analysis has been done for the ‘below 2C’ pathway,
but excluding the Oxford scenario so that the same number of scenarios are included under each pathway. Results are in
appendix section 8.3. Findings are the same for ‘below 2C’ with or without the Oxford scenario.

40Evaluation of the differences in stringency between ‘below 2C’ scenarios and ‘net zero 2050’ scenarios is further discussed
in section 8.2.

41Keywan Riahi et al. “Locked into Copenhagen pledges: Implications of short-term emission targets for the cost and
feasibility of long-term climate goals”. In: Technological Forecasting and Social Change 90 (2015), pp. 8–23.
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(a) Renewables (b) Coal

(c) Oil (d) Gas

(e) Hydro (f) Nuclear

Fig. 6: Coefficient of variation in NPV by range of percentage change in NPV across ‘Net Zero
2050’ scenarios. The x–axis shows the coefficient of variation, which can be positive or negative
based on the average NPV performance of the company across all scenarios. The y–axis shows the
total range of percentage change in NPV as the largest minus the smallest percentage NPV change
for a company, with the higher value indicating the wider the range in company performance across
the ‘net zero 2050’ scenarios. Blue coloured data points indicate consistency for the company as
either showing positive NPV change across all scenarios, or all negative. Orange coloured data
points indicate inconsistency, where some scenarios show positive NPV changes for the company,
while others show negative.
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are similarly high levels of variation and uncertainty in the range of performance between the ‘net

zero 2050’ and the ‘below 2C’ pathways. The wide ranging variation in NPV greater than 200 in

absolute value is driven by the disagreement in positive or negative performance between scenarios

of the same pathway, indicating disagreement and uncertainty between scenarios on the uptake of

hydro and nuclear as alternative technologies under either pathway.

For coal, the set of scenarios shows wide uncertainty in the rate and progress of coal phase

out. Hence, in contrast to evidence from gas, oil, and renewable technology companies, which

show alignment between scenarios and reduced market risk under a more stringent and orderly

transition, the wide ranging variation and inconsistent company performance for coal, hydro, and

nuclear across scenarios and pathways suggest a higher degree of uncertainty and market risk for

either uptake or phase out, irrespective of the stringency of the pathway.

The comparative results under different climate scenarios and pathways yields important find-

ings for the assessment of transition risk. For financial institutions seeking to understand the market

risk of their portfolio of power companies, the unknown and potentially high stringency policies

that may be required to attain specific climate goals are assumed to introduce greater market risk

and higher volatility with increasing stringency. However, stress testing a global set of power com-

panies using the TRISK framework has shown the opposite to be true. Comparing a broad set of

scenarios and providers under two different pathways has shown that there is greater uncertainty

in the assessment of company performance under less stringent pathways since scenarios model

a wider range of trajectories and a larger carbon budget. However, under a more specific target

or narrow policy ambition, there are fewer trajectories for meeting a smaller carbon budget, and

hence there is less uncertainty and lower market risk.

The additional uncertainty related with climate stress testing models coupled with low climate

ambition could potentially affect the risk assessment of lending institutions, and thereby impact the

viability and operations of these institutions in terms of their investments and returns. This could

subsequently lead to a sharp rise in risk premium and cause instability to the financial system.

Therefore, a focus on more stringent climate scenarios could help to strengthen the financial system

by reducing market risk, whereas further delays and less ambitious targets can lead to higher

systemic risks.

While comparative analysis of company performance under a ‘below 2C’ pathway and a ‘net

zero 2050’ pathway leads to clear differences in market risk based on policy stringency, this has only

been found for some technologies. Regardless of the pathway, there is still wide ranging uncertainty

in the performance of coal, hydro, and nuclear companies. Hence, while findings demonstrate that
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alignment with more ambitious and stringent climate goals can lead to reduced uncertainty and

volatility in the assessment of market risk for gas, oil, and renewable companies, the choice in both

the pathway and the scenario is still the main driver of uncertainty. Consequently, the wide ranging

and inconsistent assessment of company performance between scenarios and pathways means that

the greatest determinant of transition risk assessment is the choice in the scenario and pathway

itself.

5 Results: Impact on probability of default

5.1 Key findings

In the previous section, we showed that market risk for individual firms based on Net Present Value

change can significantly vary with the choice of climate IAM models even when these follow the

same narrative pathways. However, variability in the choice of model does not only impact firm

value change but can also be propagated to financial institutions’ loan books. Within the TRISK

framework, the financial institution credit risk impact is estimated using Merton–type structural

model of credit risk, which explicitly models the firm Probability of Default (PD) as the likelihood

of a company asset value falling below a default threshold (value of liabilities) within a certain

time horizon.

NPV change is used to determines the transition–risk related impact on company asset value

and it is therefore the most significant driver of risk in the credit risk model. The PD is estimated

both for under baseline and shock scenario assumptions and the resulting risk parameter of interest

is the absolute difference between ‘baseline PD’ and ‘shock PD’, that is a ‘PD change’, in a similar

fashion as the NPV change is created. The relationship between NPV change and PD change is

therefore direct which would suggest that the company–level scenario model outcome variation

should be very similar both for NPV change or PD change. It is important to highlight that TRISK

outputs PD change in absolute terms, while the NPV change is represented as a percentage change.

Selected scenario pairs demonstrate higher agreement on PD change compared to

NPV change. Figure 7 illustrates selected bilateral relationship of TRISK results for PD change

between pairs of scenarios for the net zero 2050 pathway. The x–axis represents the change in PD

(in percentage points of PD difference) for GCAM or MESSAGEix while the y–axis represents the

change in PD (in percentage points) for REMIND, WEO, and IPR FPS scenarios.42 The immediate

42The blue and red quadrants indicate agreement between scenarios where companies are shown to either improve in
positive PD change under both scenarios in the blue quadrant, or lose with negative PD change under both scenarios in
the red quadrant. Again, the bilateral pairs of scenarios are shown as a scatter plot of the relative change in company PD
change from the TRISK model under the two scenarios, where the 45–degree line represents agreement in the company PD
change between the two scenarios.
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finding is that contrary to NPV change impacts, the selected scenario pairs agree relatively more

on PD change.

When assessing the distance of PD change impacts from this 45–degree line, the scenario pair

that shows the most dispersed distribution, and therefore a significant disagreement in PD change,

is GCAM and WEO. However, the distribution of PD change for all selected scenario pairs while

clustered around 0 on the x-axis is shown to have a wide range of impacts on along the y–axis.

This means that for a significant number of companies, very low or 0 PD change impact may

correspond to a wide range of impacts in another scenario. The variability of credit risk scenario

impacts hence appears to be less characterised by conflicting signs of scenario impacts but rather

about a conflicting severity of PD change – low impact in one scenario corresponds to a large

impact in another. The green and yellow quadrants where companies show disagreement in PD

change includes a small number of companies that fall into these quadrants, which confirms the

suggestion that the main risk in assessing resilience to climate transition when expressed in PD

terms is in the conflicting severity of impacts.

Figure 8 shows a comparative analysis of the dispersion and variability of NPV changes for

companies is evaluated across the NZ0 and B2Ds scenario for the Power sector. As there are only

Power sector companies in our sample and TRISK outputs PDs on company–sector level there is

only one figure for each policy ambition. Figure 8 identifies whether a company’s PD change is

consistent or inconsistent in positive or negative change across the scenarios of the same policy

ambition. Blue coloured data points indicate consistency for the company as either showing positive

PD change across all scenarios, or all negative. Orange coloured data points indicate inconsistency,

where some scenarios show positive PD changes for the company, while others show negative.

From the figure, the majority of the data points show consistently negative or positive impact

(blue data points for agreement across scenarios) both for the ‘below 2C’ and ‘Net Zero 2050’

scenarios. This finding holds along the full range of PD change. Additionally, the dispersion of

climate scenario model PD change impacts appears to show a more narrow distribution for scenarios

under the ‘net zero 2050’ climate ambition compared to the ‘below 2C’ pathway. This finding is

consistent with what has been observed under NPV effects that show a narrower range in variation

under the more stringent ‘net zero 2050’ pathway compared to the less stringent ‘below 2C’.

Most notably, both figures 8a and 8b show a low coefficient of variation for the majority

scenario impacts and this again holds true along the full range of PD change. This seems to

confirm the suggestion that in PD change terms, the scenarios agree relatively more. It is worth

noting, however, that contrary to the technology–based NPV model, the PD model operates only
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(a) Gcam – Remind (b) Gcam – WEO

(c) Gcam – Message (d) IPR – Message

Fig. 7: Distribution of company change in probability of default by scenario pairs for net zero
2050 pathway

on company–sector where technology–level shocks are aggregated (more discussion on this point in

the next section). Further, if there are conflicting signs and a variation between scenario impacts

then it appears mainly in the low ranges of PD difference. This seems, in some degree, to refute

the concern associated with the conflicting severity of scenario impacts. As the majority of outliers

and conflicting signs appears in the low range of PD differences, the risk of miscalculating climate

transition credit risk for a given company due to a choice of a particular scenario are not material

overall. But note that there are nevertheless several cases of conflicting signs, especially in for a

positive coefficient of variation meaning that for some companies, there may be a highly positive

PD change impact in one scenario corresponding to a small negative PD change impact in another.
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(a) Net Zero 2050, Power sector (b) Below 2C, Power sector

Fig. 8: Coefficient of variation in PD by range of difference in PD value across ‘Net Zero 2050’
and ‘Below 2C’ scenarios

5.2 Additional considerations: Role of input data and model assumptions

This paper has so far outlined how the credit risk impacts differ for climate scenarios with the same

policy ambition using TRISK as a consistent climate stress testing model framework. However,

there are several input data and model assumptions inherent to the TRISK methodology which

may, on their own, contribute the variability of financial risk impacts and which hence need to be

highlighted.

First, whereas the Net Present Value change is estimated for each profit–generating and

technology–specific business unit of a company, the PD change model operates only on whole–

company level and only sector level. This is because the key input into the discounted cashflow

model are technology level profit pathways and therefore is used to estimate NPV change for each

profit–generating business unit of a company. For example, for a firm operating in the Power sector

and active in Renewables, Nuclear, and Coal power generation technologies, the NPV is estimated

separately each for those Renewables, Nuclear and Coal technology–specific business units. On the

other hand, the Merton structural credit risk model estimates the transition risk impact on the

probability of default of whole companies. This is achieved by aggregating the NPV impact across

all business units (weighted for their relative size) and then use the NPV change as data input

on the impact on company valuation in the Merton model to derive a single, company–level PD

change. This means that some of the technology–specific shocks are aggregated to sector level in

the PD model which may relatively reduce the technology–specific scenario variability as shown in

the PD change analysis.
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Second, contrary to NPV change estimation, the credit risk PD change model relies on an

additional data input which is company financial risk profile on top of the production and scenario

data inputs used in the NPV model. Although the firm–level financial data is applied consistently

across both B2DS and NZ0 scenario model runs for all technologies, it may alter the distribution of

individual firm PDs impacts for each scenario run as PD change in not only function of the selected

climate baseline and shock scenario but also the individual firm’s financial risk position as it enters

the model. Further, the firm–level financial data is dependent on either the data self–reported by

companies for which there may be some concerns on accuracy or assumptions on companies that

need to be accounted for in the absence of corporate-reported data. Without accurate or complete

corporate reported data, this can lead to some variation in credit risk impacts due to uncertainty

from individual firm data.

Third, there are likely other transmission channels which would be expected to impact the

scenario variability, but which are currently not represented in the TRISK model framework.43 In

particular, the credit risk model in current state assumes a scenario–independent asset volatility.

The Merton model uses total NPV value change of a firm as the only driver of risk. However, it is

reasonable to assume that company value volatility may spike in response to a climate transition

shock, particularly in the case of a negative production shock leading to reduced profits and

dividends. This calls for a stochastic representation of the scenario–dependent company volatility

which would act as additional risk channel.44 However, such a representation is not currently

incorporated in the model and is left for further development.

Fourth, it is worth bringing to attention several challenges related to the choice of the credit

risk model. The Merton model is useful in the TRISK framework for mainstream applicability

and its coherency with the output produce by the NPV change model. But there are important

questions that need to be raised about the suitability of the Merton credit risk framework for

climate financial risk analysis. For instance, the Merton framework assumes a normal distribution

of the shock and company value as well as perfect competition and efficient financial markets

without frictions. However, a standard normal distribution contrasts with the expected realised

distribution of climate risk impacts which is likely to have sharper peak and fatter tails. In the

context of climate risk, tail–risk loss events related to extreme but plausible climate transition are

not well represented by the Merton model. Further, the normal distribution of company value is

43Lucia Alessi and Stefano Battiston. “Two sides of the same coin: Green taxonomy alignment versus transition risk in
financial portfolios”. In: International Review of Financial Analysis 84.1 (2022), pp. 1–19.

44Alan Roncoroni, Stefano Battiston, and Luis O.L. Escobar-Farfan. “Climate risk and financial stability in the networks
of banks and investment funds”. In: Journal of Financial Stability 54.100870 (2021), pp. 1–27.
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assumed to be scenario independent which again, in the context of varying scenario impacts needs

to be reconsidered.

6 Conclusion

This paper evaluates the financial market risk calculated across five different climate scenario

models using a consistent bottom–up climate stress test to show that there is significant variation

in the market valuation of a set of global power companies as measure by Net Present Value change.

Additionally, results show that when company NPV effects are aggregated to financial impacts,

the variability in company NPV changes has a significant impact on the assessment of credit risk

as measured by probability of default change, although variability is lower.

When using the TRISK model to produce NPV changes across a global set of 3,419 power

companies, the resulting distribution of NPV changes shows significant differences in company

performance, premised on the shock scenario applied to the stress test. Although there is broad

alignment in NPV change according to Spearman correlation for bilateral scenario pairs, a more

formal comparison of the shape of the distribution using the Wilcoxon signed–rank test shows that,

in nearly all cases, a company’s NPV under one scenario significantly differs from the performance

of that same company under another scenario, even when the scenarios are based on the same

narrative of the future temperature target or policy ambition.

To test whether variability in climate stress test outcomes is related to differences in climate

scenario models based on the type of energy technology, this paper looks at the dispersion of

company technology impacts across all five scenario models according to each energy technology

type, based on either a more stringent ‘Net Zero 2050’ policy ambition, or a less stringent ‘Below

2°C’ narrative. We identify several consistent broad trends across all scenario models for both levels

of climate policy ambition such as increasing NPV change for renewables, or decreasing NPV for

oil, coal, and gas companies, more importantly though, there is a clear evidence of a high degree

of uncertainty and variability in individual company performance based on the choice of scenario

being applied. Findings show that the uncertainty is higher for the scenarios of the ‘Below 2°C’

climate policy ambition than the ‘Net Zero 2050’ ambition.

Overall, there are six main implications to our findings:

1. The choice of scenario model can lead to significantly different assessments of cli-

mate transition risk for companies. This is represented both in the significant differences

in the distribution of NPV changes based on the input shock scenario used, as well as how it

creates disagreements in company performance for different technologie, with some technology
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level impacts indicating opposite valuations, highlighting that many companies are losing value

in one scenario, but gaining value in another scenario.

2. There may be a link between climate policy ambition and the variability of model

outcomes based on types of energy technologies, with more ambitious climate policy

scenarios (‘net zero 2050’) possessing generally less variation in outcomes than the less ambitious

ones (‘below 2°C) both in the NPV change and the PD change outcomes.45

3. Variability and disagreement in company performance is highly dependent on the

type of energy technology. Findings have shown that shock scenarios show broad agreement

between in the change in company performance for renewables, oil, gas, and coal, however

widespread disagreement in the performance of hydro and nuclear. For renewable companies

between pathways and across scenarios, they show an improvement in performance with positive

NPV changes. For most coal, oil, and gas companies, most scenarios show agreement in NPV

losses. In contrast, scenarios show widespread disagreement with a high degree of both positive

and negative NPV changes for hydro and nuclear companies, and wide ranging variation and

distribution of NPV changes.

4. Some climate scenario models demonstrate significant outlying disagreement com-

pared to other scenarios. Analysis of both overall distributions and company performance

based on technology type have identified climate models such as the Oxford model and MES-

SAGEix that have a wide difference in the distribution of NPV changes relative to other scenario

models used in the stress test. The magnitude of these differences in company performance could

be due to several factors underlying the climate model itself, such as differences in modelling

assumptions.

5. The high variability between scenarios for the same climate policy ambition high-

lights the black–box nature of models. This is particularly true due to the assumptions used

to derive those technology level trends from mainstream climate scenario providers.46 Although

it is expected that different scenario providers show some degree of difference in trajectory for

the same temperature target or policy ambition, how these differences in trajectories are fur-

ther propagated through subsequent financial risk analysis, or the extent to which it would be

expected, has not been established. We propose that a follow?up analysis of the technology level

output trends and input parameter assumptions is performed using an input?output model.

45A caveat to this finding is the fact that we are only comparing two climate policy ambitions in this paper. To further
support this claim, a follow–up analysis would need to consider climate scenarios from a broader range of climate policy
ambitions.

46Tang and Pianosi, An input-output sensitivity analysis of climate-economy integrated assessment models, op. cit.
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6. Analysis of the effect of scenario variability in the probability of default outcomes

shows relatively smaller variations than those indicated by NPV change. Aggregating

company performance under NPV to company–sector across energy technologies broadly shows

lower levels of variation in PDs at all levels of dispersion, with less variation in PD under the

more stringent ‘net zero 2050’ pathway compared to the ‘below 2°C pathway. However, there is

still widespread disagreement in PD outcomes with several companies showing high variation in

PD across scenarios at relatively low differences in distribution of PD change, most likely due to

the large number of companies that show disagreement in positive or negative PD performance.

While this paper has identified several findings affecting the assessment of climate risk based

on the input of different climate scenarios and models, this has been applied to a consistent cli-

mate stress test. There are several frameworks for climate stress testing that have been developed,

including different methods for inferring climate scenario shocks on companies and financial insti-

tutions from a variety of scenario models. For ease and efficiency, the 1in1000 TRISK climate stress

testing framework allows for a very direct method of translating climate scenario technology path-

ways to corporate valuation impacts. Despite this, the credit risk model adds an additional layer

of complexity; TRISK first calculates NPV impacts and then uses those as a subsequent input into

an add–on credit risk model. Hence, there is a more direct link between the scenario pathways and

NPV change impacts than between the scenarios and PD differences. The additional modelling

layers such as the add–on credit risk model, additional data sources and several assumptions spe-

cific to the Merton framework may increase the risk that some variability is attributed to those

additional layers rather than the differences in source climate scenarios.

The use of the 1in1000 TRISK stress testing framework is designed to be as transparent a

framework as possible for the analysis of different input scenario models. For subsequent research,

further work needs to be done to transparently test additional model assumptions to determine

the degree to which credit risk variability can be attributed to stress test model assumptions. The

need for the both consideration of multiple scenarios, as well as reverse stress testing approaches

to address issues of transparency has been similarly highlighted by other studies.47

The variability of climate scenario trends can have significant implications for how

they are applied as inputs to climate stress testing frameworks. Climate financial scenarios

considered in this analysis rely on pathways derived from Integrated Assessment Models. The

literature on IAMs has emphasised that future trends from these models should be treated as

indicative of broad climate financial outcomes, rather than as precise forecasts of what will happen

47David Aikman, Romain Angotti, and Katarzyna Budnik. “Stress testing with multiple scenarios: A tale on tails and
reverse stress scenarios”. In: European Central Bank Working Paper Series 2941 (2024).
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under certain conditions. However, a growing number of corporate or supervisory climate stress test

exercises have been using climate scenarios and models as predictive forecasts to inform supervision,

regulation, and policymaking. However, findings from this paper demonstrate that the results of

any financial stress test, regardless of the complexity, consistency, or transparency, are highly

dependent on the climate scenario that is being input into the stress test. This has important

implications for financial institutions, highlighting the need to consider a broader range of climate

scenarios and the application of several future trends due to the potential for biases in climate

scenarios, and the uncertainty in the assessment of risk from the stress testing framework itself.
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8 Appendix

8.1 Technology trends

Evaluation of company performance under different shock scenarios is based on forecasts of energy

technology changes in production. Production forecasts are taken from each shock scenario. The

TRISK model calculates technology trajectories in two distinct ways based on high or low carbon

energy technologies. For carbon–intensive technologies, trajectories are based on the implied growth

rates taken from the scenario trajectory. In contrast, for low carbon technologies, the trajectories

are derived from the technology’s relative share in relation to the total sectoral production over

time. This approach is used to better capturing the build–out of companies that operate multiple

technologies within the power sector, as well as for those planning production expansions in the

coming years but with no production realised in the starting year.

Fig. 9: Forecast trends for energy technologies according to different scenarios under the below
2C pathway.

Analysis in sections 4.2 and 4.2.2 are based on different company NPV changes for each tech-

nology trend, for each scenario. Figure 9 shows the forecast trends for each technology under the

‘below 2C’ pathway. While there are differences in the trends, they do not show variability to

the same extent that variability is observed in company performance, as they all show consistent

increasing or decreasing trends over time. Additionally, figure 10 shows the technology trends for
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the ‘net zero 2050’ pathway. The trends are similar to those for the ‘below 2C’ pathway in that

they show widespread agreement in either increasing or decreasing trends over time.

Under both pathways, the only technology trend that shows a difference in tra-

jectory compared to other scenarios is the positive increase in the amount of gas

produced under the MESSAGEix IAM, whereas all other scenarios show a decrease in gas

production. Despite this difference in the direction of the trend in gas production under both

pathways, the impact on company performance does not correspond to a higher variation in gas

company performance observed in sections 4.2 and 4.2.2.

Fig. 10: Forecast trends for energy technologies according to different scenarios under the net zero
2050 pathway.

Comparisons in technology trends show that even slight differences in production trajectories

can be propagated through a climate stress test to represent larger differences in the assessment of

company performance and risk. Additionally, while most technology trends show fairly consistent

and similar trajectories, this is not always the case, as observed from the assumptions on the uptake

of gas under MESSAGEix. Hence, the choice in the climate scenario has significant implications

for the assessment of climate risk based on technology type, and individual company performance.

8.2 Climate pathway stringency

Comparisons of climate stress tests have focused on broad categorisations of scenarios according

to climate policy ambition, policy timing and coordination, technology evolution, and temperature
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target. While these categories are broad, and include several assumptions and uncertainties that

are modelled differently for each IAM, which leads to different trajectories, they have been grouped

together according to similar themes and parameters for how the future green transition will unfold.

Analysis in this paper has focused on differences in stringency between a ‘below 2C’ pathway,

and a ‘net zero 2050’ pathway, with the former being less stringent than the latter. The theme of

these two pathways have been taken from the scenarios provided by NGFS, which comprises 3 of

the 6 IAM scenarios used in this analysis from table 1, being GCAM, REMIND, and MESSAGEix.

The other three scenario providers used in this analysis, IEA, IPR, and Oxford, do not make the

exact same distinctions between the two pathways as that made by NGFS, but broadly fit the

same narrative framework of either reaching net zero by 2050, and the other achieving the more

modest goal of maintaining a below 2C global average surface temperature warming by the end of

the century.

Fig. 11: NGFS scenario narrative pathways according to key assumptions. Green is “low risk”,
yellow is “medium risk”, and red is “high risk”.

Under net zero 2050 scenarios, global warming is limited to 1.5°C through a series of stringent

and coordinated climate policies and innovations, with global net zero being achieved by mid–

century. In contrast, the below 2°C pathway is less ambitions, and gives a longer timeline to

achieving climate goals by end of century rather than by mid–century. Rather than having a global

policy coordination for net zero, it is assumed that only 80 percent of countries with stated net

zero targets reaching them by the end of the century. Under this set of scenarios, it is expected that

global warming will reach 2°C by the end of century. Differences in temperature target and policy

ambition and coordination are highlighted according to key characteristics by NGFS in table 11.48

48Christoph Bertram et al. NGFS Climate Scenarios Database. Technical Documentation. Network for Greening the
Financial System Macrofinancial Workstream, June 2020, pp. 20.
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The ordering of scenario narratives in table 11 highlights the distinctions between the below 2C

narrative and the net zero 2050 based on differences in policy coordination, ambition, temperature

target, and technological evolution. Additionally, differences in policy stringency and transition

risk are shown in figure 12, which shows the total amount of global emissions per year that are

expected under each NGFS scenario for either the below 2C or net zero 2050 pathway. The trends

in global emissions for each IAM are coloured according to the narrative pathway, with red for

below 2C scenarios, and blue for net zero 2050.

Fig. 12: Global amount Mt CO2 that is emitted under each NGFS scenario

First, the trajectory of global emissions is different under each IAM, despite sharing the same

narrative pathway. Second, all trends show a reduction in emissions towards mid–century. Third,

differences in stringency according to both narrative pathway and scenarios are observed by the

amount of emissions that are allotted under each trajectory. For all three scenarios under the below

2C target, they project a greater amount of global emissions than for all scenarios under the net

zero 2050 pathway. Hence, between the two, the carbon budget for all net zero 2050 scenarios

is smaller than for all below 2C scenarios, thus the stringency is higher under the net zero 2050

pathway. Given the broad characteristics of how these two narrative pathways have been described

by NGFS, as well as the amount of carbon budget allotted under each, there is a clear distinction

in the level of policy stringency and coordination between the two. Premised on the differences
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between pathways, this paper has found that, given the uncertainty in modelling future pathways,

there is more agreement and less risk to companies and financial institutions under more stringent

and ambitious climate scenarios, rather than those that delay action and policy coordination later

in the century.

8.3 Sensitivity to the Oxford scenario

The focus and part of the main findings of this paper have been on the identification of differences

in the variability of company performance, and hence market risk, based on the stringency of

scenarios according to pathway, with a focus on the net zero 2050 goal, or more broadly ensuring a

below 2C global average surface temperature warning by the end of the century. Table 1 shows the

categorisation of different climate scenarios and their providers based on their broad objectives in

terms of policy ambition and temperature target.

From the table, the study has included one extra scenario that is categorised under the ‘below

2C’ pathway compared to the ‘net zero 2050’ pathway. Since much of the analysis in this paper

is premised on the extent of variation and dispersion in company performance under a stress test

based on the choice in climate scenario, it is possible that the presence of more scenarios under

one pathway relative to another could significantly affect the results. Therefore, as a measure of

robustness of the analysis, the same analysis previously applied in sections 4.2 and 4.2.2 is replicated

here for the ‘below 2C’ pathway, but omitting the Oxford scenario, since it is the only one that is

present only under ‘below 2C’ and not under ‘net zero 2050’. Results are shown in figure 13.

The Oxford scenarios only shows a significant impact on NPV variability on renew-

ables. Results of the range and variation in NPV impacts for power companies according to

technology type along the y and x axis respectively show essentially no change in either the dis-

persion of scenario impacts on NPV, nor in the coefficient of variation. The only case where there

is some change in results compared to the inclusion of the Oxford scenario is for renewables, plot

13a. The exclusion of the Oxford scenario shows a different pattern in the dispersion and variation

of company performance, and a lower level of variation. Across all other technology types, when

using the same scenario providers as analysed under ‘net zero 2050’ as here for ‘below 2C’, findings

remain the same showing a wider range in NPV change, and a higher coefficient of variation for

the less stringent pathway, than for the more stringent ‘net zero 2050’ pathway.
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(a) Renewables (b) Coal

(c) Oil (d) Gas

(e) Hydro (f) Nuclear

Fig. 13: Coefficient of variation in NPV by range of percentage change in NPV across ‘Below 2C’
scenarios, balanced set of scenario providers with ‘net zero 2050’
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